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The extent to which language acquisition relies on computations that go beyond
basic statistical abilities has been a topic of important debates. One crucial test
case for such theories have been artificial language learning experiments. Recent
computational models of artificial language learning suggested that not only the
acquisition of words, but even of certain grammar-like regularities can be learned
by basic statistical mechanisms. Here, we expand the scope of these models, asking
whether they are compatible with human behavior. We show that even the results
that were supposedly explained by statistical mechanisms contradict the modeling
results. Through a more detailed analysis of previous simulations as well as new
simulations, we demonstrate that these networks do not only fail to reproduce the
data, but make predictions that are inconsistent with basic psychological facts. We
suggest that the artificial language learning literature is better explained by mul-
tiple mechanism models, and that some of these mechanisms might draw on basic
perceptual abilities that cannot be reduced to statistical computations.

Introduction

Language acquisition is a complex learning problem,
and the underlying mechanisms are poorly understood.
A useful theoretical baseline against which models of
language acquisition can be compared are basic statis-
tical processes, due to the widespread assumption that
statistical processes are in some sense basic and domain-
general (but see Garcia, Hankins, & Rusiniak, 1974;
Gallistel, 2000; Gallistel & Gibbon, 2000). As such,
before postulating complex and potentially language-
and human-specific computational systems, it is often
useful to ask whether non-statistical mechanisms are re-
ally required for rule-like regularities, or whether basic
statistical computations might suffice.

The most prominent test case has been the mecha-
nisms underlying the regular English past-tense inflec-
tions and other phenomena from inflectional morphol-
ogy. It seems fair to say that the debate is still on-
going, and that a lot has been learned in the process
(see McClelland & Patterson, 2002; Pinker & Ullman,
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2002for reviews). Another research tradition that has
been widely used to assess the need for non-statistical
computations uses artificial languages. Such languages
are highly simplified but mirror key characteristics of
natural languages, and, importantly allow investigators
to monitor the processes of language acquisition in the
laboratory.

One such case study has been provided by Peña, Bon-
atti, Nespor, and Mehler (2002) and Endress and Bon-
atti (2007). They used the artificial language learning
approach to study two crucial aspects of language ac-
quisition: learning the words and the rules of a lan-
guage. They concluded that independent mechanisms
might underlie these different aspects of language acqui-
sition. This research has led to a number of important
challenges of different aspects of their claims. However,
these criticisms have been addressed one by one, and do
not seem to explain the available data (see below and
Laakso & Calvo, 2011 for discussion).

A more important challenge has been put forward
by Laakso and Calvo (2011). They replicated a sub-
set of the simulations reported by Endress and Bonatti
(2007), and, while finding similar results, concluded that
one single mechanism could account for both aspects of
language acquisition. However, the scope of their mod-
eling was extremely limited, and did not take advantage
of the extensive amount of empirical data available to
assess the contribution of statistical and non-statistical
mechanisms to language acquisition. Here, we build on
this work, in an attempt to provide a more comprehen-
sive test of the relative merits of single vs. multiple
mechanism models of artificial grammar learning. We
compare the simulations to the empirical data, derive
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novel predictions from these simulations, and perform
novel simulations.

Before discussing these results in more detail, it is
useful to clarify the goals for the present work. Modelers
of cognitive phenomena often propose to provide “exis-
tence proofs” showing that a single-mechanism, statis-
tical learning model can account for data (e.g., Laakso
& Calvo, 2011). However, as discussed extensively in,
among others, Endress and Bonatti (2007), it is obvious
that some network will reproduce some phenomenon or
the other, and in fact, even Endress and Bonatti (2007)
reported some simulations where the purely statistical
models partially reproduced some aspects of the data
they used to argue for a multiple mechanism theory.
Here, we assume that, for a model to have any scientific
interest at all, it is not sufficient to partially reproduce
one phenomenon out of a multitude of experiments, but
that statistical models need to be compared against a
wider set of data than previously accomplished.

Learning words and rules from fluent speech

By far the most influential artificial language studies
concern the question of how words are extracted from
fluent speech. To acquire words, infants need to know
where they start and where they end, even though fluent
speech does not contain the equivalent of white space in
written language. It has long been assumed that there
are no language-universal speech cues to word bound-
aries (Aslin, Saffran, & Newport, 1998; Saffran, New-
port, & Aslin, 1996; Saffran, Aslin, & Newport, 1996;
but see Brentari, González, Seidl, & Wilbur, 2011; En-
dress & Hauser, 2010; Pilon, 1981). Moreover, while lin-
guists had noted that distributional analysis might lead
to cues to word boundaries (e.g., Harris, 1955), such
observation were generally deemed psychologically im-
plausible. This view changed with the seminal demon-
stration that even young infants are sensitive to distri-
butional cues (Aslin et al., 1998; Saffran, Newport, &
Aslin, 1996; Saffran, Aslin, & Newport, 1996). These
results opened the possibility that infants might learn
words from fluent speech by tracking transitional prob-
abilities (TPs) among syllables. The underlying intu-
ition is that syllables that are part of the same word
are more likely to occur together than syllables that are
part of different words (Aslin et al., 1998; Saffran, New-
port, & Aslin, 1996; Saffran, Aslin, & Newport, 1996; see
Batchelder, 2002; Brent & Cartwright, 1996; Perruchet
& Vinter, 1998; Swingley, 2005, for related models im-
plementing similar ideas). By now, there is overwhelm-
ing evidence that human infants and other animals can
track TPs in speech and other stimuli (e.g., Aslin et al.,
1998; Hauser, Newport, & Aslin, 2001; Saffran, New-
port, & Aslin, 1996; Saffran, Aslin, & Newport, 1996;
Saffran & Griepentrog, 2001; Toro & Trobalón, 2005)
and, consequently, a widespread consensus that infants
can use TPs to extract words from fluent speech (but see
Endress & Mehler, 2009b; Medina, Snedeker, Trueswell,

& Gleitman, 2011; Gillette, Gleitman, Gleitman, & Led-
erer, 1999; Yang, 2004, for opposing views).

However, infants do not have to learn just the words
of their native language. They also have to acquire its
grammar. In the wake of these demonstration of the
impressive statistical learning abilities in humans and
other animals, different authors suggested that the very
same abilities might also be used to learn much more
abstract, grammatical features of language (e.g., Aslin
& Newport, 2012; Bates & Elman, 1996; Elman et al.,
1996; Saffran, 2001; Saffran & Wilson, 2003; Seiden-
berg, 1997), potentially showing that much of the in-
nate and human-specific computational machinery pre-
viously supposed to be necessary for language acqui-
sition (e.g., Lenneberg, 1967; Chomsky, 1975; Mehler
& Dupoux, 1990) might be unnecessary. Considerable
debates followed, trying to assess whether the statisti-
cal mechanisms that might be used to learn words from
fluent speech might also be used for learning grammar
(e.g., Bates & Elman, 1996; Elman et al., 1996; McClel-
land & Patterson, 2002; Saffran, 2001; Saffran & Wil-
son, 2003; Seidenberg, 1997; Seidenberg & Elman, 1999)
or whether words and rules are learned using different
mechanisms (e.g., Fodor & Pylyshyn, 1988; Marcus, Vi-
jayan, Rao, & Vishton, 1999; Marcus, 1998; Pinker,
1999; Pinker & Prince, 1988; Pinker & Ullman, 2002;
Peña et al., 2002; Endress & Bonatti, 2007; Bonatti,
Peña, Nespor, & Mehler, 2005; Toro, Bonatti, Nespor, &
Mehler, 2008; Toro, Shukla, Nespor, & Endress, 2008).

Extracting words and rules
from artificial speech streams

Against this background, Peña et al. (2002) provided
a case where both word-learning and rule-learning could
be observed simultaneously, and seemed to obey differ-
ent constraints. Exposing human adults to a sequence
of trisyllabic items, these authors first showed that hu-
man adults can find words in a continuous speech stream
by tracking statistical dependencies between nonadja-
cent items. (Different authors challenged the conclusion
that participants can track TPs between non-adjacent
syllables, and suggested that the relevant data might
rather be a result of phonological confounds (Newport
& Aslin, 2004; Onnis, Monaghan, Richmond, & Chater,
2005; Perruchet, Tyler, Galland, & Peereman, 2004).
However, Peña et al. (2002) had actually controlled for
such confounds, and it is now fairly accepted even by
scholars who were initially skeptical of such abilities
that participants are indeed sensitive to such TPs (e.g.,
Peña et al., 2002; Endress & Bonatti, 2007; Endress &
Mehler, 2009a; Endress & Wood, 2011; Onnis et al.,
2005; Pacton & Perruchet, 2008), a conclusion that is
shared even by scholars who are otherwise critical of the
multiple mechanisms hypothesis (e.g., Laakso & Calvo,
2011). We thus do not discuss this literature further.)

Importantly, Peña et al. (2002) also showed that par-
ticipants could not use the abilities to track TPs be-
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tween nonadjacent items for extracting certain rule-like
“generalizations” within the words. These generaliza-
tions required additional cues that could be as subtle as
separating words by silence of just 25 ms. According to
Peña et al. (2002), these silences may have provided seg-
mentation cues, probably adding to the stream a mini-
mal form of prosody that allowed learners to extract the
hidden generalizations. These data, as well as Endress
and Bonatti’s (2007) and Endress and Mehler’s (2009a)
results later on, provided an important case suggesting
that certain simple grammar-like regularities could not
be learned based on the type of statistical mechanisms
that supports TP computations, but rather required dif-
ferent mechanisms. Endress and Bonatti (2007) dubbed
this conclusion the MOM (More than One Mechanisms)
hypothesis: A statistical mechanisms might track TPs
among adjacent and non-adjacent syllables, irrespec-
tive of whether silences are inserted between the words.
When additional markers, such as short silences, are in-
serted between words, a second (class of) mechanism(s)
allows participants to extract simple rule-like general-
izations involving syllables that occur word-initially and
word-finally, respectively, as if participants had learned
a set of legal prefixes and a set of legal suffixes.

To test these issues, Peña et al. (2002) and Endress
and Bonatti (2007) familiarized participants with a
string of trisyllabic words. Words were constructed from
three Ai . . . Ci frames, into which three different sylla-
bles could be inserted. This yielded 9 words of the form
AiXCi. During the test phase following the familiariza-
tion, Peña et al. (2002) and Endress and Bonatti (2007)
used three critical types of test items among which par-
ticipants had to choose: “class-words,”“part-words” and
“rule-words.” Class-words had the structure AiX

′Cj .
That is, their initial and final syllables had occurred in
these positions during familiarization, but never in the
same word because they came from different frames. In
contrast, their middle syllables had never occurred in
the middle position during familiarization, but were A
or C syllables. In other words, class-words had “correct”
initial and final syllables, but had never occurred in the
familiarization stream and had TPs of zero between all
syllables.

Part-words had occurred in the speech streams, but
straddled a word-boundary. That is, such words had ei-
ther the structure CiAjX, taking the last syllable from
one word and the first two syllables from the next word,
or the structure XCiAj , taking the last two syllables
from one word and the first syllable of the next words.
Hence, part-words had occurred in the speech stream
and had, therefore, positive TPs between their syllables.
However, they had “incorrect” initial and final syllables,
and, therefore, incorrect “affixes.”

Rule-words were like class-words, except that the first
and the last syllable came from the same frame, yielding
the structure AiX

′Ci; hence, they had “correct” initial
and final syllables, and TPs of 1.0 between their first
and their last syllable.

To test whether participants were sensitive to TPs
between non-adjacent items, Peña et al. (2002) asked
them to choose between words and part-words after ex-
posure to a continuous stream. Because both items had
similar TPs among adjacent syllables, but different TPs
among non-adjacent syllables, a preference for words
over part-words would suggest that participants tracked
relations between nonadjacent syllables. After 10 min
exposure, participants succeeded in the task. Further
evidence comes from experiments by Endress and Bon-
atti (2007) who asked participants to choose between
rule-words and class-words. Given that rule-words and
class-words are identical except that the first and the
last syllable comes from the same frame in rule-words
but not in class-words, participants should prefer rule-
words to class-words if they had learned this statistical
dependency between the first and the last syllable. Re-
sults showed that they did both after continuous and
after segmented familiarizations, suggesting that they
could track TPs among syllables irrespectively of the
presence of segmentation markers.

To test whether participants are sensitive to struc-
tural information in the speech stream, and whether
they can learn “legal” prefix and suffix syllables, re-
spectively, Endress and Bonatti (2007) asked them to
choose between class-words and part-words. If they
choose class-words, they must have learned the “legal”
initial and final syllables; after all, the initial and fi-
nal syllables are the only feature that class-words share
with what participants had heard during the familiar-
ization stream. In contrast, part-words had occurred
during the familiarization and had, therefore, non-zero
TPs. Results showed that participants preferred class-
words to part-words only when familiarized with a seg-
mented stream, in which 25 ms silences were inserted
between words, but not when familiarized with a contin-
uous stream, suggesting that the segmentation cues were
required to track the syllables at word edges. Moreover,
Endress and Mehler (2009a) showed that participants
specifically track information about the edges of words
(i.e., their first and their last syllables) rather than arbi-
trary syllable positions. Using longer, five-syllable words
(as opposed to the tri-syllabic words used by Endress &
Bonatti, 2007), they showed that the generalizations are
available only when the crucial syllables are the first and
the last one (i.e., in words of the form AiXY ZCi, where
Ai and Ci are the critical syllables), but not when the
crucial syllables are word-medial (i.e., in words of the
form XAiY CiZ). It should be noted that all of these
results have ben replicated with non-linguistic stimuli
such as action sequences (Endress & Wood, 2011).

Strikingly, participants in Endress and Bonatti’s
(2007) experiments preferred class-words to part-words
after short, segmented familiarizations, but this prefer-
ence disappeared after 30 min of familiarization. More-
over, after a 60-min familiarization, participants even
preferred part-words to class-words, reversing their ini-
tial preference. Hence, the rule-like regularities are
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Table 1
Summary of the main test item types used by Peña et al. (2002) and Endress & Bonatti (2007).

Words Part-Words Rule-Words Class-Words

AiXCi Ci|AjX or AiX
′Ci AiX

′Cj

XCi|Aj

Appear in the stream Appear in the stream As words, but with As rule-words, but with
TP(Ai →Ci) = 1 but straddle a word new X first and last syllable

boundary syllables from different families

available very quickly, whereas statistical information
appears to require time and exposure to consolidate.1

Prior simulations of rule
acquisition with a single

statistical mechanism

While such data suggest several mechanisms might be
at play in artificial language learning (and, by extension,
in language acquisition in general), they do not provide
a definitive proof. Endress and Bonatti (2007) provided
other indirect evidence that a single statistical mecha-
nism could not account for these data, based on sim-
ulations with a prominent candidate single-mechanism
model that has been widely used in the study of lan-
guage acquisition: a Simple Recurrent Network (SRN;
Elman, 1990). In line with previous research, the net-
work was trained to predict the next syllable in the
speech stream based on the previous syllable(s).

Endress and Bonatti (2007) tested a large number of
network parameters, as well as training conditions, using
20 simulations as units of analysis in order to match the
statistical power of their behavioral experiments. The
results clearly showed that the overall pattern of the sim-
ulations was not compatible with the behavioral data.

Importantly, Endress and Bonatti (2007) did not use
these results to argue that SRN cannot prefer class-
words to part-words in principle. In fact, they found
conditions in which the network did mimic certain as-
pects of the participants’ responses. However, they also
showed that the conditions under which such aspects of
the data were successfully reproduced were inconsistent
with other aspect of the data. The networks seemed to
reproduce the preference for class-words over part-words
under specific assumptions:

1. The network had to encode silences in the famil-
iarization with an explicit extra-symbol.

2. The test part-word did not include silences (i.e.,
the extra-symbol).

3. Class-words were compared only against part-
words of type XCiAj but not to part-words of type
CiAjX.

All three conditions are problematic. First, while the
silences clearly influenced the computations performed
by the participants, several considerations suggest that
they are not represented as an extra-symbol that under-
goes TP computations just like syllables; we will review
this evidence below. Second, while the participants’ per-
formance did not depend on whether or not the part-
words included silences (see Peña et al.’s (2002) Foot-
note 27 and below), the network behaved in a markedly
different way depending on whether the silences were
included in the test items. Third, in contrast to the net-
work, adults’ preference for class-words over part-words
never depended on the type of part-word against which
class-words were tested. For these reasons, Endress and
Bonatti (2007) concluded that the results of the simula-
tion “suggest that purely statistical mechanisms such as
SRNs cannot account for the preference for class-words
or for the negative correlation between the preference for
class-words and the familiarization duration” (p. 285).
Again, this conclusion was not a principled argument
against the possibility that a single mechanism could
account for some aspect of the data or the other, but
an overall assessment of the behavior of a large class
of networks under different simulation constraints, once
the available evidence was taken into account.

Laakso and Calvo (2011) recently revisited the ques-
tion of whether an SRN could account for the overall
data. They ran a set of simulations that was very similar

1 These results generalizes the findings by Peña et al.
(2002), who asked participants to choose between rule-words
and part-words, either after exposure to a continuous stream
or to a segmented stream. Compared to class-words, rule-
words have TPs of 1.0 between their first and their last syl-
lable, in addition to having legal initial and final syllables.
Yet, while participants preferred rule-words to part-words
only when exposed to a brief segmented stream, they failed
to do so after exposure to a continuous stream. Furthermore,
receiving more familiarization did not help: participants al-
ways failed to find structural information when exposed to
continuous streams, and even preferred part-words to rule-
words after a 30 min familiarization.
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to those reported by Endress and Bonatti (2007). They
studied a slightly different network, in which the num-
ber of hidden units, the activation function as well as the
number of simulations taken as units for analysis were
changed with respect to Endress and Bonatti (2007).
Aside from these differences, Laakso and Calvo (2011)
basically replicated a subset of Endress and Bonatti’s
(2007) simulations.

As expected, their results were similar to Endress and
Bonatti’s (2007). However, they drew markedly differ-
ent conclusions. Specifically, according to Laakso and
Calvo (2011), their network allegedly preferred class-
word to part-words after few training cycles but inverted
this preference after more familiarization cycles, osten-
sibly reproducing one aspect of Endress and Bonatti’s
(2007) results with adult participants. However, closer
examination of the modeling results revealed that the
network’s success in reproducing this aspect of the re-
sults was only partial, because the reversal in the pref-
erence was carried exclusively by part-words of type
CiAjX, whereas part-words of type XCiAj were never
preferred to class-words after any number of training
cycles. Nevertheless, because the reversal in the prefer-
ence, albeit for both part-word types, was one of the ar-
guments Endress and Bonatti (2007) marshaled in sup-
port of the presence of multiple mechanisms, Laakso and
Calvo (2011) took their network’s partial success as a
proof that language can be acquired by means of one
single statistical mechanism.

Given the limited scope of Laakso and Calvo’s (2011)
simulations, we will ask whether such models account
for the qualitative pattern of results in Endress and Bon-
atti’s (2007) and other studies, and whether these data
are really consistent with Laakso and Calvo’s (2011)
simulations, broadening the scope of the data to which
the network results are compared.

Laakso and Calvo’s (2011)
simulations

We first analyze those of Endress and Bonatti’s (2007)
experiments that Laakso and Calvo (2011) simulated,
asking whether the experiments are really consistent
with the simulations.

Asymmetries between test items types. Laakso and
Calvo’s (2011) crucial argument relies on the claim that,
with segmented familiarizations, the network prefers
class-words to part-words after few training cycles, and
part-words to class-words after more familiarization cy-
cles, allegedly reproducing some of Endress and Bon-
atti’s (2007) data. This claim, however, is incorrect. As
is clear from their Figure 4, and as discussed by Endress
and Bonatti (2007) (p. 283), the network reversed the
preference only against part-words with the structure
CiAjX, while the network preferred class-words to part-
words with the structure XCiAj after all numbers of
training cycles. In contrast, with human data, Endress

and Bonatti (2007) did not find such an asymmetry be-
tween part-word types.2

Laakso and Calvo (2011) tried to explain away the
apparent discrepancy between the data and their cen-
tral result arguing that Endress and Bonatti’s (2007)
data were not so compelling after all, and that “a suffi-
ciently powerful test of the hypothesis that participants
[would] respond differently to part words of different
types [was] therefore needed (p. 18).” On a general
level, this criticism is certainly possible, just as it is pos-
sible that any statistically significant result is obtained
by chance (albeit with low probability). However, it is
clearly ad-hoc, and Laakso and Calvo (2011) did not
provide any evidence to support it. Further, Laakso
and Calvo (2011) did not perform a power analysis to
evaluate the hypothesis that the relevant experiments
lack statistical power; they did not specify what level
of statistical power would be sufficient for an adequate
test of the hypotheses or the model; and they did not
show that the test they proposed addresses the alleged
problem of statistical power in any way. Thus, it ap-
pears that the claim that Endress and Bonatti’s (2007)
data lack adequate statistical power is not motivated,
and the actual results seem to show that Laakso and
Calvo’s (2011) model contradicts the available evidence.

The dynamics of the preference for different test
items. While Laakso and Calvo’s (2011) arguments are
mainly based on the dynamics of their networks, this dy-
namics reveals qualitative departures from the empirical
results. For example, in their Study 2, their network was
exposed to a continuous speech stream and part-words
were preferred to class-words after the earliest familiar-
ization durations. In contrast, in Endress and Bonatti’s
(2007) results, participants remained at chance even af-
ter a 10 min familiarization. Likewise, in their Study 2,
part-words are preferred to rule-words after few famil-
iarization cycles. This contrasts markedly with Peña et
al.’s (2002) results where such a preference arose only
after very long familiarization durations of at least 30
min. Hence, the network behavior is inconsistent with
human behavior even for the network dynamics which
Laakso and Calvo (2011) present as their strongest case.

Laakso and Calvo (2011) acknowledge the latter dis-
crepancy between the model and the data, and speculate
about the psychological processes of Endress and Bon-

2 Endress and Bonatti (2007) already commented that the
reason for the asymmetry in how the network performed on
the two part-word types “lies in a quirk of the representation
induced by the familiarization onto the network that does not
seem to affect participants. When silences are represented
as extra-symbols during familiarization, the network learns
that a silence follows a ‘C’ syllable with certainty. During
the test phase, because the second syllables of part-words of
type [XCiAj ] are precisely ‘C’ syllables, the network will sys-
tematically predict an incorrect syllable, unless the silences
are also included in the part-words” (p. 283).
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atti’s (2007) participants. They argue that “based on
[their] network modeling results, however, [they] have
suggested that participants may not be learning a class
rule even when the familiarization stream contains seg-
mentation cues. Rather, participants may simply be
slower to develop a dispreference for class words than
they are to develop a dispreference for part words.” (p.
23). It appears curious to make inferences about what
humans learn “based on network modeling results” that
do not fit the humans’ behavior in the first place. It
thus seems fair to conclude that their model is at odds
with the available empirical data.

The relative preferences for different test items. It
is also instructive to ask whether the network correctly
predicts the relative strength of the preferences for dif-
ferent test items. For example, in Study 1, where the
network was familiarized with a segmented stream, the
model predicts that, after short familiarization dura-
tions, the preference for class-words over part-words
should be much stronger than the preference for words
over rule-words. To compare the strength of the model’s
preferences with those of actual humans, we compared
the effect sizes of these results. As shown in Figure 1,
using the values from Laakso and Calvo’s (2011) Ta-
ble B1, one obtains an effect size (Cohen’s d) of 8.93
for the class-word vs. part-word discrimination, and of
1.18 for the word vs. rule-word discrimination. Actual
humans show the opposite pattern: the class-word vs.
part-word discrimination yielded effect sizes of .64 in
Endress and Bonatti’s (2007) Experiments 3, while the
word vs. rule-word discrimination yielded an effect size
of 1.59 in Endress and Bonatti’s (2007) Experiment 8.
(In Experiment 10, Endress and Bonatti (2007) used dif-
ferent stimuli than in Experiments 3 and 8; the resulting
class-word vs. part-word discrimination yielded an ef-
fect size of 1.24, and hence does not show the marked ad-
vantage for the class-word vs. part-word discrimination
shown by Laakso and Calvo’s (2011) network.) Thus,
the model behavior does not fit the human data.

Is it harder to remember words heard more often?.
The network also makes a prediction that seems to
contradict well-established principles of psychology. In
Laakso and Calvo’s (2011) Study 1, the preference for
words over part-words follows an inverted U-shaped pat-
tern when considering means, and shows decreasing per-
formance when considering effect sizes corresponding
to the discrimination (see Figure 2). This, however,
contradicts basic findings in the psychology of mem-
ory. To see why, consider that, in some of Endress
and Mehler’s (2009a) experiments, the familiarization
stream consisted of a clearly distinguishable sequence of
words presented in isolation, separated by silences of 1
s. Hence, the subsequent two-alternative forced-choice
task just amounted to a memory test for words.

If, as Laakso and Calvo (2011) propose (and we agree)
the 1-s separation is computationally equivalent to the

25-ms silences used by Endress and Bonatti (2007), their
model ought to apply to Endress and Mehler’s (2009a)
experiments as it does to Endress and Bonatti’s (2007)
experiments. As a result, the prediction that the prefer-
ence for words over part-words decreases with longer fa-
miliarizations just amounts to the prediction that mem-
ory for words should be worse when words are presented
more often. However, Ebbinghaus (1885/1913), and
many authors after him, have shown that presenting
items more often helps memory performance and does
not hurt it. Hence, the network behavior contradicts one
of the best-established facts of experimental psychology.

Expanding the scope of the
investigation: Further

explorations of the SRN model

Peña et al. (2002), Endress and Bonatti (2007),
Endress and Mehler (2009a) and Endress and Wood
(2011) provided other data that have not been compared
against statistical learning models. We will now turn to
these results

For example, in their Footnote 27, Peña et al. (2002)
reported the following experiment. They familiarized
participants with a segmented 10 min stream. Follow-
ing this, they asked participants to choose between rule-
words and part-words including 25 ms silences between
the C and the A syllable; that is, these part-words had
the structure XCi#Aj , where # stands for a 25 ms si-
lence. Results showed that, just as in Peña et al.’s (2002)
Experiment 3 where part-words did not contain silences,
participants preferred rule-words to part-words. These
results directly contradict Laakso and Calvo’s (2011)
model. Given that the model is trained to predict sylla-
bles from silences, it would necessarily predict a stronger
preference for part-words when these contain silences,
simply because silence-containing part-words reflect ex-
actly the statistical structure of the part-words in the
speech stream. In fact, Endress and Bonatti (2007) in-
vestigated this issue in their simulations. As is clear
from their Figure 11, the network settings in which
the network prefers class-words to part-words essentially
disappear once silences are included in the part-words,
providing another case for the MOM hypothesis.

Another critical case for the MOM hypothesis comes
from Endress and Mehler’s (2009a) data. They used
penta-syllabic words (as opposed to the trisyllabic items
used by Endress & Bonatti, 2007). That is, while
Endress and Bonatti (2007) used words of the form
AiXCi, Endress and Mehler (2009a) used words of the
form AiXY ZCi (where the critical A and C syllable
were in the first and the last position), and XAiY CiZ
(where the critical syllables were in word-internal po-
sitions). Endress and Mehler (2009a) showed that the
positional generalizations can be performed when the
critical syllables are in the first and the last position
of words, but not when they are in the second and
the fourth position: When familiarized with a seg-
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a b

Figure 1. Effect sizes (Cohen’s d) for the class-word vs. part-word discrimination (dark bars) and the word vs. rule-word
discrimination with segmented 2-min streams in (a) humans and (b) networks. (a) In humans, the word vs. rule-word
discrimination is numerically easier than the class-words vs. part-word discrimination. Note that Endress & Bonatti (2007)
used a different stimulus materials in Experiment 10 than in Experiments 3 and 8. (b) After the number of training cycles
Laakso & Calvo (2011) propose to correspond to a 2-min familiarization, the network performance on the class-word vs.
part-word discrimination is much better than on the word vs. rule-word discrimination, showing the opposite pattern from
humans.

mented stream, participants preferred class-words to
part-words, but only when the critical syllables were in
the first and the last position, and not when the critical
syllables were word-internal. In contrast, when famil-
iarized with a continuous stream, participants preferred
part-words to class-words, with no difference due to the
location of the critical syllables.

Laakso and Calvo (2011) claim that “the results of
Endress and Mehler can easily be accommodated within
the general framework herewith advocated” (p. 30).
However, this is most likely false. If, as Laakso and
Calvo (2011) assume, the generalizations are computed
by associations between a single boundary marker (e.g.,
a symbol for the silences) and items in the critical posi-
tions within words, generalizations in the fourth position
should be easier to track than in the last position, simply
because the fourth position is closer to the marker of the
onset, and because it is well known that associations be-
tween closer items are easier to track than associations
between more distant items (Ebbinghaus, 1885/1913).
Laakso and Calvo’s (2011) model seems to suggest the
contrary.

We verified this intuition by running simulations with
an SRN, using 450 parameter sets. For each parameter
set, we simulated an experiment with 20 participants.3

To reproduce the edge advantage for the generaliza-
tions, the network needs to exhibit (i) a significant pref-
erence for class-words to part-words in the edge condi-
tion; (ii) a (significant or non-significant) preference for
part-words to class-words in the middle condition; and
(iii) a significant difference (i.e., interaction) between
the preference for class-words over part-words and the
edge vs. middle manipulation. At least in the param-
eter set explored, there was not a single simulated ex-
periment fulfilling the conditions. In fact, there was not
a single simulation where class-words were preferred to
part-words in the edge condition.

Further, in most of the simulations, the preference for
class-words was at least numerically stronger in the mid-
dle condition than in the edge condition (see Figure 3). 4

Hence, it seems that an SRN does not easily account for

3 We used the same network architecture as Endress and
Bonatti (2007), except that, following Laakso and Calvo
(2011), we used 54 hidden units and set the momentum to
0. We varied learning rates between 10−5 and .9 in 15 steps,
and learning cycles between 10 and 300.

4 Like Endress and Bonatti (2007) and Laakso and Calvo
(2011), we exposed the network to a segmented stream, and
then tested the network’s preferences by recording its output
for the target syllable of the test items, using the cosine sim-
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a b

Figure 2. Difference in predictions for the last syllable of words and part-words, respectively, after (a) a familiarization with
a segmented stream and (b) a familiarization with a continuous stream. The solid line shows the average difference between
the cosinus values between the predicted network output and the target “syllables.” The dashed line shows the corresponding
effect sizes (Cohen’s d). Laakso & Calvo (2011) simulations predict that it should be harder to recognize words when they
are encountered more often.

A B C

Figure 3. We simulated experiments by recording the results of 20 simulations with different network initializations, repre-
senting 20 participants. One experiment was simulated for each set of network parameters. The networks did not reproduce
the preference for class-words over part-words in the edge condition for any set of network parameters. However, for com-
pleteness, we report more detailed results. (A) Proportion of simulated experiments where the preference for class-words over
part-words is (significantly or numerically) stronger in the edge condition or the middle condition, depending on whether, in
the middle condition, the fourth or the fifth syllable is considered as the target syllable. For most simulated experiments, the
preference for class-words is stronger in the middle condition than in the edge condition (i.e., the preference for part-words
is weaker), suggesting that the network does not intrinsically account for Endress & Mehler’s (2009a) data. (B) F-values
associated with the interaction between the preference for class-words over part-words and the edge vs. middle condition
when the fourth syllable is considered the target syllable. When the preference for class-words was stronger in the middle
condition, the F-values were multiplied by -1. (C) F-values associated with the aforementioned interaction when the fifth
syllable is considered the target syllable.
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Endress and Mehler’s (2009a) results. In other words,
the network fails to reproduce the basic psychological
phenomenon that events in edges of sequences are easier
to process than edge in sequence-middles.5

The data that every theory
should model: the converging
evidence for multiple learning

mechanisms

The analyses so far focused on phenomena that might
potentially be modeled by an SRN. However, there
are other strands of research that support the multiple
mechanism view for which it is not even clear how they
can possibly modeled by such a model.

For example, the two mechanisms seem to have a dif-
ferent developmental time course. When 18-months-old
infants are exposed to artificial streams similar to Peña
et al.’s (2002) stimuli, but containing a conflict between
statistical information and generalizations, they can ex-
tract statistically coherent items, but do not generalize
structural regularities. In contrast, when exposed to
a segmented speech stream, they generalize structural
regularities, and choose them over statistically coherent
items, again just like adults. In contrast, 12-months-
olds show a strikingly different pattern. Like adults and
18-month-olds, they can generalize structural general-
izations when exposed to a segmented speech stream.
However, they are unable to identify statistically coher-
ent items when exposed to a continuous stream, even if
this stream contains only minimal conflicts between sta-
tistical and structural information (Marchetto & Bon-
atti, under review).6 Hence, the ability to draw struc-
tural generalizations and to extract statistical informa-
tion (across non-adjacent syllables) seem to arise at dif-
ferent ages, which seems difficult to reconcile with the
view that both abilities rely on the same mechanism.

Likewise, the details of what the computations encode
when acquiring a rule or when computing TPs seem dif-
ferent. Specifically, TPs and the rule mechanism be-
have in qualitatively different ways under temporal re-
versal. This fact has been shown by Endress and Wood
(2011), who replicated Endress and Bonatti’s (2007) and
Endress and Mehler’s (2009a) results with movement
sequences (rather than speech material). Reproducing
earlier results by Turk-Browne and Scholl (2009), they
showed that participants are as good at discriminating
high-TP items from low-TP items when these are played
forward as when they are played backward. That is, if
ABC is a high-TP item and DEF is a low-TP item, par-
ticipants are as good if tested on ABC vs. DEF as when
tested on CBA vs. FED.7 In contrast, participants do
not retain positional information when the test items are
reversed, and never chose generalization items that are
played backwards. Hence, TPs and the rule mechanism
behave in qualitatively different ways under temporal
reversal.

Further, the two mechanisms seem to encode spatial

properties differently. Endress and Wood (2011) famil-
iarized participants with a sequence of movements per-
formed by an actor in frontal view. During test, how-
ever, the actor was rotated by 90o. While participants
retained some sensitivity to rule-like generalizations af-
ter the actor had been rotated, they failed to discrimi-
nate high-TP from low-TP items. In other words, TPs
and positional information appear to behave differently
under spatial rotation. This result can be explained if
these two mechanisms are independent, but it is harder
to explain if they rely on the same TP-based mechanism.

Another piece of evidence for independent mecha-
nisms comes from brain imaging experiments. For ex-
ample, using material similar to Peña et al.’s (2002),
different authors suggested that ERPs differ according
to whether participants extract words or rules from
the same speech stream (Balaguer, Toro, Rodriguez-
Fornells, & Bachoud-Lévi, 2007; Mueller, Bahlmann, &
Friederici, 2008). The learning of statistical regulari-
ties appeared correlated with a central N400 compo-
nent, whereas the extraction of structural information
was associated with an earlier P2 component (see also
Mueller et al., 2008). Further, using speech streams
similar to those used by (Peña et al., 2002), de Diego-
Balaguer, Fuentemilla, and Rodriguez-Fornells (2011)
suggested that statistical learning and the extraction
of structural information are characterized by different

ilarity measure. However, in the middle condition, there are
two ways to define the target syllable. Given that the criti-
cal syllables for the generalizations are in the second and the
fourth position in the middle condition, the most appropriate
choice for the target syllable is arguably the fourth syllable.
Alternatively, one might also choose the last syllable. For
completeness, we represent both possibilities in Figure 3

5 While participants in Endress and Mehler’s (2009a) ex-
periments were not directly tested on their retention of class-
words but rather had to choose between class-words and
part-words, the statistical structure of the part-words as well
as Endress and Mehler’s (2009a) Experiment 2 suggest that
there is no intrinsic preference for part-words depending on
whether the crucial syllables are at the edges of words or
word-internal. As a result, the preferential learning of the
positional generalization when the critical syllables are in
word-edges reflects better learning of sequential positions at
word-edges.

6 These results do not contradict the view that infants are
sensitive to statistical information. While prior demonstra-
tions of statistical learning in infants used statistical rela-
tions between adjacent syllables, Marchetto & Bonatti’s ex-
periments relied on statistical relations among non-adjacent
syllables, and such relations are likely to be more difficult to
track.

7 While these results seem to suggest that TPs are not di-
rectional, Turk-Browne and Scholl (2009) also showed that
forward items can be discriminated from backward items,
that is, participants prefer ABC to CBA, suggesting that
TPs retain some directional information as well.
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patterns of dynamical brain activity. Long-range coher-
ence between different regions of the scalp was found
in different frequency bands for learning the statistical
regularities and the structural regularities, respectively.

In sum, beyond Peña et al.’s (2002) and Endress and
Bonatti’s (2007) initial results, there is considerable ev-
idence for dissociations between rule mechanisms and
statistical mechanisms (see Table 2 for a summary).
These dissociations appear in the cues used by either
mechanism, their respective time courses of operation,
the conditions under which they break down, their re-
spective sensitivity to temporal order, their respective
resilience to spatial rotation, their ontogenetic develop-
ment, their brain mechanisms, and the specificity of rep-
resentations they create.

Further, even among the aspects of the data that have
been modeled with an SRN, the model behavior differs
qualitatively from the behavior of actual humans, and
makes predictions that are at odds with basic psycho-
logical phenomena, such as the prediction that mem-
ory for items should be worse when they are repeated
more often, or the failure to reproduce the advantage
for processing items in edges of sequences. Hence, the
model does not only clash with some opaque details of
the available data, but even the most crucial arguments
put forward in support of a single mechanism account
seem to qualitatively contradict the available data.

In contrast, there might be a simple explanation of
the facts reviewed above, based on two well-known types
of memory encoding for sequences, known as chaining
memory and ordinal memory (we will refer to the lat-
ter type of memory as “positional” memory for consis-
tency with Endress and Mehler’s (2009a) terminology).
Specifically, a sequence like ABCD might be encoded in
two different ways (see e.g. Henson, 1998, for a review).
First, people might encode it in terms of the actual tran-
sition between elements (e.g., A → B → C → D), a cod-
ing scheme that is, at its root, a deterministic version
of TPs. Second, people might encode it structurally, by
reference to the positions of the sequence items, relative
to the first and the last position (e.g., Conrad, 1960;
Henson, 1998, 1999; Hicks, Hakes, & Young, 1966; Ng &
Maybery, 2002; Schulz, 1955). They might know that A
came first, D came last, and B and C occurred at some
distance from the first and the last position. Endress
and Bonatti (2007) and Endress and Mehler (2009a)
suggested that two mechanisms involved in word learn-
ing and rule-like generalizations might be probabilis-
tic versions of chaining memory and positional mem-
ory. This account differs only in one aspect from the
aforementioned memory models: while it is generally as-
sumed in the serial memory literature that participants
have access to either one mechanisms or the other (see
e.g. Henson, 1998, for a review), Endress and Bonatti
(2007) and Endress and Mehler (2009a) suggested that
participants might use both mechanisms simultaneously.
While this account does not predict all of the data re-
viewed above (e.g., there is no a priori reason to predict

that the two mechanisms are differentially sensitive to
spatial rotation), it is at least consistent with it.

More generally, we believe that the issue of how many
mechanisms exist and how they work together cannot
be decided by “existence proofs” alone, if such existence
proofs are constrained to an extremely limited aspect of
the available data. Rather, theories need to be tested
against the available data, and should be compatible
with basic psychological facts. This does not show that
purely associationnist accounts of these data are neces-
sarily incorrect, but it does suggest that artificially re-
stricting the debate to limited sets of partial simulations
is a non-starter.
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